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SUPPLEMENTARY METHODS 
 
The model. PRS-CSx employs the following Bayesian high-dimensional linear regression model for 𝐾 
populations: 
 

𝒚! = 𝑿!𝜷! + 𝝐! ,					𝝐! 	~	MVN.𝟎, 𝜎!"𝑰2,					𝜋.𝜎!"2 ∝ 𝜎!#",					𝑘 = 1, 2,⋯ , 𝐾, 
 
where, for each population 𝑘,  𝒚! is a vector of standardized phenotypes (zero mean and unit variance) from 
𝑁! individuals, 𝑿! is an 𝑁! ×𝑀! matrix of standardized genotypes (each column has zero mean and unit 
variance), 𝜷! is a vector of SNP effect sizes, 𝝐! is a vector of normally distributed non-genetic effects with 
variance 𝜎!", for which we assign a non-informative prior, and 𝑰 is an identify matrix. We use 𝑗 = 1, 2,⋯ ,𝑀 to 
index the 𝑀 unique SNPs across populations. For SNP 𝑗 in population 𝑘, a continuous shrinkage prior is 
placed on its effect size 𝛽$!, which can be represented as global-local scale mixtures of normals: 
 

𝛽$! 	~	N >0,
𝜎!"

𝑁!
𝜓$A,					𝜓$ 	~	G.𝑎, 𝛿$2,					𝛿$ 	~	G(𝑏, 𝜙), 

 
where 𝜙 is a global shrinkage parameter shared across all SNPs that models the overall sparseness of the 
genetic architecture, and 𝜓$ is a local, SNP-specific shrinkage parameter that is adaptive to marginal GWAS 
associations. Since both 𝜙 and 𝜓$ do not depend on 𝑘, the continuous shrinkage prior is shared across 
populations. Note that for any 𝑐 > 0, if a random variable 𝑋 follows a gamma distribution, 𝑋	~	G(𝜁, 𝜂), then 
𝑐𝑋	~	G(𝜁, 𝜂/𝑐). The variance of 𝛽$! thus scales with both	𝜙 and 𝜓$. 
 
Full conditionals. Let MVN(𝝁, 𝚺) denote the multivariate normal distribution with mean 𝝁 and covariance 
matrix 𝚺; G(𝜁, 𝜂) and iG(𝜁, 𝜂) denote the gamma distribution and inverse gamma distribution, respectively, with 
probability density functions 
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where Γ(∙) is the gamma function. Let giG(𝜆, 𝜌, 𝜒) denote the three-parameter generalized inverse Gaussian 
distribution with density function 
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where 𝐾* is the modified Bessel function of the second kind. In addition, let 𝜷d! = 𝑿!,𝒚!/𝑁! denote the marginal 
least squares effect size estimates for population 𝑘 and 𝑫! = 𝑿!,𝑿!/𝑁! denote the LD matrix for population 𝑘. 
𝜳 = diag{𝜓', 	𝜓", ⋯ , 𝜓-} is a diagonal matrix, and 𝐾$ is the number of populations in which SNP 𝑗 is present. 
The full conditional distributions for unknown model parameters are analytically tractable as shown below. 
 
Posterior distribution of the unknown model parameters: 

𝜋.𝜷! , 𝜎!", 𝜓$ , 𝛿$ 	k	𝒚! , 𝑘 = 1, 2,⋯ , 𝐾2 ∝l m𝑓.𝒚! 	k	𝜷! , 𝜎!"2𝜋.𝜷! 	k	𝜎!", 𝜓$2𝜋(𝜎!")n
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The full conditional distribution of	𝜷!: 
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The full conditional distribution of 𝜎!": 
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The full conditional distribution of 𝜓$: 
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The full conditional distribution of 𝛿$: 
 

𝜋.𝛿$ 	k	𝜓$2 ∝ 𝜋.𝜓$ 	k	𝛿$2𝜋.𝛿$2	
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Gibbs sampler. In summary, the Gibbs sampler for the PRS-CSx model involves the following steps in each 
Markov Chain Monte Carlo (MCMC) iteration: 
 

• Update	𝜷! for each population 𝑘: 

[	𝜷! 	|	𝜎!", 𝜳, 𝜷d! , 𝑫! 	]	~	MVN(𝝁! , 𝜮!),					𝝁! =
𝑁!
𝜎!"
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• Update 𝜎!" for each population 𝑘: 
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• Update 𝜓$ for each variant 𝑗: 
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• Update 𝛿$ for each variant 𝑗:   

[	𝛿$ 	|	𝜓$ 	]	~	G.𝑎 + 𝑏, 𝜓$ + 𝜙2. 
 
In practice, for each population 𝑘, the genome is divided into independent LD blocks. Posterior effect sizes 
within each block is updated sequentially within each MCMC iteration. 
 
 
SIMULATIONS 
In the primary simulation, PRS-CS was more accurate than LDpred2 in both within- and cross-population 
prediction when the discovery GWAS was well-powered, while LDpred2 was more accurate when the 
discovery sample size was limited, which likely reflects the strengths and limitations of the continuous 
shrinkage prior vs. the spike-and-slab prior used in PRS-CS and LDpred2, respectively. Specifically, to ensure 
that posterior effect size estimates are not inflated, we have imposed a minimal shrinkage to the marginal 
effect size estimates in PRS-CS, which may induce a stronger-than-optimal regularization when the GWAS 
sample size is small. In contrast, LDpred2 does not guarantee that the bounds of the posterior effect size 
estimates are finite, which may better separate signals from noise when the GWAS has limited power. 
However, this comes at the expense of the algorithm being sensitive to imperfectly matched LD reference 
panels and having convergence issues when the GWAS sample size is large. 
 
We conducted a series of secondary simulations, by varying one parameter in the primary simulation at a time, 
to assess the generalizability of the observations in the primary simulation and the robustness of PRS-CSx 
across a wide range of genetic architectures, cross-population genetic overlaps and discovery GWAS sample 



sizes. (i) We varied the polygenicity of the genetic architecture by randomly sampling 0.1% or 10% of the 
HapMap3 variants as causal variants. For fixed heritability, the predictive performance of all PRS construction 
methods reduced as the genetic architecture became more polygenic, due to the increasing difficulty of 
accurately estimating small genetic effects and separating signals from noise. The coupled shrinkage prior 
provided larger gain in prediction accuracy when the genetic architecture was sparse but its benefit was 
reduced in the extreme polygenic case (Extended Data Fig. 1; Supplementary Table 2). (ii) We varied the 
cross-population genetic correlation using rg=0.4 or rg=1.0. As expected, cross-population prediction accuracy 
was higher when SNP effect sizes were highly concordant across populations and decreased when genetic 
effects became less correlated, making effect size estimates less transferable. However, the improvement of 
PRS-CSx relative to PRS-CS-mult was largely consistent across different genetic correlations (Extended Data 
Fig. 2; Supplementary Table 3). (iii) We varied the sample size of the discovery GWAS with the ratio of the 
EUR vs. non-EUR GWAS sample sizes kept unchanged (50K EUR + 10K non-EUR; 200K EUR + 40K non-
EUR; 300K EUR + 60K non-EUR). PRS-CS and PRS-CS-mult were less accurate than LDpred2 and LDpred2-
mult when the discovery GWAS were small but outperformed LDpred2-based methods when the GWAS 
became more powerful. The improvement of PRS-CSx over PRS-CS-mult was robust regardless of the 
variation in the discovery sample size (Extended Data Fig. 3; Supplementary Table 4). (iv) We varied the ratio 
of the EUR vs. non-EUR GWAS sample sizes with the total sample size kept constant (120K EUR + 0K non-
EUR; 80K EUR + 40K non-EUR; 60K EUR + 60K non-EUR). The prediction in non-EUR populations benefitted 
substantially from increasing the proportion of non-EUR training samples, and the coupled shrinkage prior 
provided consistent gain in prediction accuracy as the power of the non-EUR GWAS varied (Extended Data 
Fig. 4; Supplementary Table 5). (v) We varied the SNP heritability of the simulated trait in different populations 
(h2=0.5 and 0.25 in EUR and non-EUR populations respectively, and vice versa). SNP heritability determined 
the overall predictability of a trait, but the relative performance across different polygenic prediction methods 
was consistent with the primary simulation (Extended Data Fig. 5; Supplementary Table 6). (vi) We reduced 
the proportion of causal variants that were shared across populations to 70% or 40% to assess the robustness 
of PRS-CSx when the modeling assumption was violated. The transferability of PRS decreased due to reduced 
similarity of the genetic architecture across populations, but PRS-CSx continued to outperform alternative 
methods, and PRS-CS-mult in particular, suggesting that the method is robust to model misspecification 
(Extended Data Fig. 6; Supplementary Table 7). (vii) We simulated allele frequency and LD dependent genetic 
architecture, where variants with lower MAF and variants located in lower LD regions tended to have larger 
effects on the trait. The predictive performance of different PRS construction methods was highly consistent 
with the primary simulation, suggesting that the methods examined are not sensitive to the coupling between 
effect size, MAF and LD (Extended Data Fig. 7; Supplementary Table 8). (ix) Lastly, we evaluated the impact 
of two hyper-parameters, which determined the shape of the continuous shrinkage prior, on the predictive 
performance of PRS-CSx. We confirmed that the default values of the two parameters used throughout this 
work, which were consistent with the default setting of PRS-CS, produced optimal prediction accuracy among 
a grid of values we assessed (Supplementary Table 9). In summary, while the benefits of using a coupled 
continuous shrinkage prior varied with simulation designs and may be small in certain scenarios, we concluded 
that PRS-CSx improved cross-population prediction accuracy relative to alternative methods across a vast 
majority of the simulation settings and was robust to model misspecification. 
 
 
MCMC DIAGNOSIS 
Convergence of the MCMC samplers employed by Bayesian polygenic prediction methods is often overlooked 
in the literature, likely because (i) the focus of polygenic prediction is to aggregate genetic effects across the 
genome into a single score, rather than making inference of the genetic effects of individual variants; and (ii) 
the sheer size of the model parameters (>1 million for each population) makes traditional model diagnostic 
methods, which often rely on graphical outputs, difficult to apply. To assess the overall convergence of the 
Gibbs sampler used in PRS-CSx, for each trait, we selected a few SNPs where we monitored the convergence 



of their posterior effect size estimates. Some of the SNPs had strong associations with the trait in multiple 
populations, while some of the SNPs were null across populations. We ran the PRS-CSx model three times 
using different random seeds, and assessed the convergence using the Gelman-Rubin convergence 
diagnostic for multiple chains (Gelman & Rubin; Stat. Sci. 7, 457–472, 1992). All reduction factors across the 
SNPs we examined were smaller than 1.05, indicating convergence. As an example, Extended Data Fig. 9 
shows the trace plots and autocorrelation functions (ACFs) for the posterior effects of rs7412 on low-density 
lipoprotein cholesterol (LDL-C) when integrating UKBB, BBJ and PAGE GWAS summary statistics using PRS-
CSx. This SNP, located within the APOE locus on chromosome 19, had extremely strong marginal 
associations with LDL-C across the three GWAS (all P-values <1E-200). Trace plots and ACFs (Extended 
Data Fig. 9) indicated that the Gibbs sampler achieved reasonable convergence and mixing. Future work is 
needed to better monitor the behavior of the Markov chain in high-dimensional settings. 


